Bifacial PV Systems: Page 3 of 5

Surface reflectivity. A bifacial PV system will generate more energy when installed over a light-colored rather than a dark-colored surface. This is because the former will reflect more light onto the back of the array, whereas the latter absorbs more of the incident irradiance. Albedo is a dimensionless quantity, usually expressed as a percentage, that describes this ratio between light reflected off a surface and the original incident irradiance. The higher the albedo value, the higher the surface reflectivity.

Table 2 provides representative albedo values for a variety of common ground surface types, as documented in the SolarWorld white paper “How to Maximize Energy Yield with Bifacial Technology” (see Resources). These values suggest that white roofing membranes, which reflect roughly 80% of the incident light when new and unweathered, are an ideal ground cover surface under a bifacial PV array. By contrast, the measured albedo value for raw concrete is only 16%. While the albedo for concrete increases dramatically when it is painted white, SolarWorld’s research indicates that not all light-colored surfaces are created equally. White gravel, for instance, has a relatively low albedo due to an “open-pored structure [that] causes a large amount of light to be lost within the voids.”

While the additional rear-side power output in a bifacial system is clearly proportional to ground surface albedo, the authors of the EPRI article note that this simple relationship “belies the fact that, in practice, energy gain depends on a number of complicated installation-specific factors.” For example, white surfaces reflect light of all colors, whereas other surfaces reflect light preferentially, absorbing some colors and reflecting others. Grass, for instance, absorbs blue and red light and mostly reflects green light. PV cells, meanwhile, vary in their ability to collect and convert different wavelengths of light into electrons.

Height and tilt angle. The closer you install a bifacial array to the ground or roof surface, the more self-shading occurs. Flush mounting, for example, effectively blocks any reflected light from reaching the back of the array. Increasing the height of the array or its tilt angle increases reflected light collection and enhances the bifacial contribution. Generally speaking, the higher you can install a bifacial PV array, the better its bifacial energy gain. However, this does not mean that bifacial modules are suited for carports and awnings only.

SolarWorld simulations suggest that a significant bifacial energy boost is possible with a relatively modest height increase. Not only is the energy boost curve in Figure 2 steepest between 0 and 0.2 meters (7.9 inches), but also the inflection point occurs somewhere around 0.5 meters (19.7 inches), after which point the curve begins to flatten out; the saturation point occurs around 1.0 meter (39.4 inches), meaning that additional energy gains are negligible above this height. These data suggest that bifacial modules are potentially well suited for just about any ground-mounted application, as the leading edge of these arrays is often 18 inches–36 inches above grade.

It is also possible to adapt conventional flat roof– mounting systems for use in bifacial applications. In its bifacial system design guide, for example, Prism Solar recommends a minimum height of just 6 inches above the reflective surface. To facilitate a slight increase in array height in low-slope–roof applications, the company has worked with mounting system manufacturers, most notably Opsun Systems, to develop structural solutions optimized for use with bifacial modules. In addition to a modified ground-mount system, the Bifacial SunGround, Opsun Systems also offers the SunRail Structure Bifacial, a higher-elevation version of its standard commercial rooftop mounting system.

Back-side shading. To optimize bifacial energy gains, system designers also need to avoid shading the back side of the array. Most racking systems have rails that run across the module’s backside, which an opaque white or black film usually covers. These structural components, especially support rails, are potential sources of shade in a bifacial system. As a result, mounting systems optimized for bifacial applications locate mounting rails at the perimeter of the modules, orienting these in parallel with rather than perpendicular to the module frame or the edge of the glass.

Back-side shading is also a concern for bifacial module manufacturers. The junction box on many monofacial modules, for example, is located directly behind one or more PV cells. By contrast, most bifacial modules have a low-profile junction box located at the perimeter of the module to minimize back-side cell shading. Though testing indicates that back-side shading from junction boxes or mounting structures will not damage a bifacial module, it does result in yield losses.

Article Discussion

Related Articles