Practical Application of NEC 2017: Page 3 of 5

Callout D: DC Arc-Fault Detection and Interruption

The 690.11 requirements for dc arc-fault circuit protection for PV systems operating at 80 Vdc or greater are unchanged in 2017. However, the CMP added an exception for PV output circuits and dc-to-dc converter output circuits not in or on buildings; this exception applies to circuits that are direct buried or installed in metal raceway or enclosed metal cable trays. It is also worth noting that 691.10 allows for large-scale (5 MW or greater) PV systems that do not comply with 690.11, provided that a PE designs and documents an alternative fire mitigation plan.

Brooks explains the logic behind these requirements: “The exception in 690.11 is based in part on the fact that no arc-fault–detection equipment exists for circuits operating above 40 A. While there are no protective devices that address PV output circuits, arcing faults in circuits that are direct buried cannot start a wildfire, and the ground-fault–protection system will detect arcing faults in circuits in metal raceways and enclosures. Since the exception does not cover source circuits, ground-mounted PV plants with a generating capacity less than 5 MW are still required to have arc-fault detection on source circuits. Developers of large-scale systems can look to Article 691.”

It is important to note that the dc arc-fault exception for PV output circuits does not cover roof- or building-mounted systems. Unless UL develops new product safety standards to address higher-current dc arc-fault devices, dc PV circuits operating above 80 V and 40 A cannot comply with NEC 2017, which means that higher-capacity central inverters with PV output circuits are essentially not allowed in rooftop applications. String inverters with integrated dc arc-fault protection can meet 690.11 requirements in rooftop or ground-mounted applications. Where the exception applies, ground-mounted applications can use dc combiners with string-level arc-fault devices.

Callout E: Rapid Shutdown of PV Systems on Buildings

For the second Code cycle in a row, 690.12, “Rapid Shutdown of PV Systems on Building,” is raising eyebrows. The CMP made significant changes and additions to this section, expanding it from a mere 133 words in NEC 2014 to more than 1,100 words in NEC 2017. We focus on a few of the most notable revisions related to initiation device type and location, and control limits outside and inside the array boundary.

Initiation device. The new subsection 690.12(C) provides specific guidance regarding allowable types of rapid-shutdown– initiation devices, including the service disconnecting means, PV system disconnecting means and readily accessible switches that clearly indicate “on” and “off” positions. This subsection further states that initiation devices at one- and two-family dwellings must be readily accessible and located outside the buildings. A six-handle initiation device rule also applies where there are multiple PV systems on a single service.

Outside array boundary. The NEC 2017 requirements for controlling PV circuit conductors outside the array are similar to those in NEC 2014, with one notable exception that will be of particular concern to system designers and installers: As shown in Figure 2, the 2017 Code defines the array boundary as extending 1 foot from the array in all directions, rather than the NEC 2014 5-foot boundary for conductors entering a building or 10-foot boundary for conductors on the roof. In the short term, integrators can design and install NEC 2017–compliant PV systems much as they are doing now—using MLPE, remotely operable roof-mounted shutdown devices or roof-mounted string inverters—except that they must now locate the latter two solutions much closer to the PV modules. Note, however, that subsection 690.12(D) requires the use of equipment specifically listed for performing the rapid-shutdown function as opposed to simply rated for the switched current and voltage.

Inside array boundary. New requirements in 690.12(B)(2) for controlling PV circuit conductors within the array illustrate where rapid-shutdown compliance becomes more difficult. This is the subsection that has industry stakeholders using the term module-level rapid shutdown when talking about the new Code requirements. This term is not entirely accurate, however, as 690.12(B)(2) lists three methods of controlling conductors within the array: using listed rapid-shutdown PV arrays [690.12(B)(2)(1)]; limiting conductors to 80 Vdc or less within 30 seconds (module-level shutdown, in other words) [690.12(B)(2)(2)]; or employing PV arrays with no exposed wiring or conductive metal parts [690.12(B)(2)(3)].

The requirements for controlling conductors within the array boundary are contentious for several reasons. Many solar industry stakeholders feel that they will drive up costs and may compromise system reliability. Others question their efficacy with regard to firefighter safety, the primary goal of rapid shutdown. While it is beyond our scope to explore all of the technical issues and stakeholder perspectives related to this topic,  “Module-Level Rapid Shutdown for Commercial Applications” covers them in detail (SolarPro, September/October 2016).

One bit of good news for the installer community is that the CMP delayed enforcement of the new requirements inside the array boundary until January 1, 2019. This short-term relief is intended to provide a UL Standards Technical Panel time to develop a product safety standard for listed rapid-shutdown arrays, as well as to allow manufacturers time to develop compliant products and solutions.

Systems with energy storage. More good news for system integrators is that the CMP added several new diagrams to 690.1. In particular, Figure 690.1(b) clarifies that the Code does not consider energy storage systems, multimode inverters, stand-alone inverters or any associated loads to be PV system circuits. Therefore, these circuits are not subject to the rapid-shutdown requirements in 690.12. The Code requirements related to energy storage systems are found in Article 706, which does not mention rapid shutdown.

Article Discussion

Related Articles